
Pochtar and Edwards

Compiling Away Recursion for Hardware

Jared R. Pochtar Stephen A. Edwards
Columbia University

jpochtar@gmail.com sedwards@cs.columbia.edu

Abstract
To provide a superior way of coding, compiling, and optimizing
parallel algorithms, we are developing techniques for synthesizing
hardware from functional specifications. Recursion, fundamental to
functional languages, does not translate naturally to hardware, but
tail recursion is iteration and easily implemented as a finite-state
machine. In this paper, we show how to translate general recursion
into tail recursion with an explicit stack that can be implemented
in hardware. We give examples, describe the algorithm, and argue
for its correctness. We also present experimental result that demon-
strate the method is effective.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Algorithms

Keywords recursion, tail recursion, hardware synthesis

1. Introduction
Parallel programming has been a continual challenge to computer
science, in part because of the seductive simplicity of sequen-
tial behavior coupled with its highly efficient use of hardware re-
sources presents such an attractive approach. Unfortunately, nearly
a decade ago, processor architects hit a power wall and ceased be-
ing able to deliver faster sequential processors. Parallelism is the
only alternative.

Despite years of research, we still do not have a widely ac-
cepted, successful architecture for parallel processors. Symmetric
multiprocessors with shared memory and coherent caches is a cur-
rent favorite, largely because it provides an incremental path, but
few think they will be the long term solution.

As part of a broader project that aims to harness the ideas of
functional programming for providing a better way to specify par-
allel algorithms, we are developing ways to implement functional
programs in hardware. The functional approach has the advantage
of being much higher-level than traditional imperative languages.
In its pure form, its immutable data structures provide an attrac-
tive high-level model of data that can avoid the costly parallel co-
herency problem, an observation made by Dennis [4], among oth-
ers.

While most of the lambda calculus is easy to translate into
hardware [2, 8], true recursion is difficult because it implies a kind

[Copyright notice will appear here once ’preprint’ option is removed.]

of resource sharing that circuitry does not naturally implement.
Yet many interesting algorithms, especially those for graphs, are
fundamentally recursive. Not supporting recursive programming
is not viable; we need some way of implementing recursion in
hardware.

In this paper, we present an algorithm that transforms a func-
tional program with true recursion into an equivalent one that re-
lies only on tail recursion. Tail recursion is simply iteration and
can be easily implemented in hardware. We effectively employ the
standard technique of pushing activation records onto a stack, but
express them with algebraic data types—standard in modern func-
tional languages and fairly easy to translate into hardware.

Ghica et al. [5] attack a similar problem, but take a different
approach. They, too, synthesize recursive algorithms in hardware,
but start instead from an imperative language. Their solution is to
replace all the local registers in a function with stacks of registers,
each of which is selected by the stack pointer for the function. By
contrast, our technique does not treat recursion as a special case:
we reduce it to standard types and objects in our formalism. As
such, our approach parallels that of Reynolds [9], who shows how
to transform a rich functional representation into a subset that is
straightforward to implement. Danvy et al. [3] has also applied this
idea extensively. Our approach was also inspired by continuation-
passing style and the approach to expressing sequential computa-
tion in a lambda calculus setting promoted by Appel [1].

Our algorithm transforms recursive code by passing around a
stack of activation records with return addresses (effectively contin-
uations) expressed as algebraic data types in a continuation-passing
style. As part of its operation, our algorithm combines groups of
mutually-recursive functions into a single function with a leading
conditional that directs incoming calls to the proper code.

Below, we introduce our algorithm through an example, de-
scribe our algorithm and its operation in detail, argue for its cor-
rectness, and finally present some experimental results that show
our algorithm works.

2. An Example
Figure 1 illustrates the operation of our algorithm on a naïve Fi-
bonacci number generator that calls itself recursively at two sites.
This example is shown in Haskell; it should be possible to adapt
our algorithm to any functional language with algebraic data types.

Starting with a recursive function (Figure 1a), our algorithm first
schedules the code into a linear representation (Figure 1b) that will
enable it to later slice the code into segments between call sites.
These segments, which run after a function would normally return,
will become continuations. Subexpressions—nested lets, function
parameters, and the scrutinees of case expressions—are pulled
out and replaced with fresh intermediate variables. Also, parallel
let constructs (i.e., that bind multiple expressions) are also made
sequential, lest one or more of them make recursive calls.

Transforming Recursion for Hardware 1 2012/10/7

fib n = case n of
1 → 1

| 2 → 1
| _ → fib (n − 1) +

fib (n − 2)

(a)

fib n = case n of
1 → 1

| 2 → 1
| _ → let t1 = n − 1 in

let t2 = fib t1 in
let t3 = n − 2 in
let t4 = fib t3 in
t2 + t4

(b)

data FibCont =
C1 Int FibCont

| C2 Int FibCont
| BOS

fibr n c = case n of
1 → fibc c 1

| 2 → fibc c 1
| _ →

let t1 = n−1 in
fibr t1 (C1 n c)

fibc c res = case c of
C1 n c ′ →

let t2 = res in
let t3 = n−2 in
fibr t3 (C2 t2 c ′)

| C2 t2 c ′ →
let t4 = res in
fibc c ′ (t2 + t4)

| BOS→ res

fib n = fibr n BOS

(c)

data FibCont =
C1 Int FibCont

| C2 Int FibCont
| BOS

data FibT =
FibR Int FibCont

| FibC Int FibCont

ff arg = case arg of
FibR n c → case n of

1 → ff (FibC c 1)
| 2 → ff (FibC c 1)
| _ →
let t1 = n−1 in
ff (FibR t1 (C1 n c))

| FibC c res → case c of
C1 n c ′ →

let t2 = res in
let t3 = n−2 in
ff (FibR t3 (C2 t2 c ′))

| C2 t2 c ′ →
let t4 = res in
ff (FibC c ′ (t2+t4))

| BOS→ res

fib n = ff (FibR BOS n)

(d)

Figure 1. Our algorithm applied to the recursive Fibonacci algo-
rithm expressed in the Haskell functional language. The starting
point (a) is linearized (b); split into segments at recursive calls
and divided into “recurse” and “continue” functions (c); and finally
merged into a single tail-recursive function.

In Figure 1b, our algorithm introduced temporaries t1, t2, t3,
and t4 and transformed the body of one of the cases into a cascade
of lets. Although there are other ways of scheduling this code, we
have not yet considered optimizing this procedure.

Next, our algorithm splits the recursive function into two pieces:
fibr, a “recurse” function that contains the first segment of the
original function (from its entry point to the first recursive calls) and
fibc, a “continue” function that contains all the other segments—
those immediately following any recursive calls (Figure 1c).

Our algorithm adds a CPS-style continuation parameter c to the
fibr and fibc functions, which relieves them from ever having to
return by instead passing them explicit continuations.

The fibc function executes continuations. Although continuation-
passing style typically expresses continuations as Lambda expres-
sions, we do not, in part because it is not clear how to directly
implement them in hardware, but also because we know exactly
which continuations are possible. Instead, fibc pattern matches on

its continuation parameter and executes the code that would other-
wise have been present in the corresponding Lambda expression.

The second parameter to fibc, res is the result from the function
call that would otherwise have been passed as an argument to the
continuation, had it been expressed as a Lambda expression. Note
that the two recursive calls of fib in Figure 1b bind their results to
t2 and t4—exactly where the various branches of fibc bind the res
argument.

In this second step, our algorithm also introduces the FibCont
data type, which encodes the three possible “return addresses” for
the fib function: C1, the code immediately after the first recursive
call (just before t2 is bound); C2, the code immediately after the
second recursive call (just before t4 is bound), and BOS (“bottom of
stack”), meaning the final result has been computed and fib should
return to the function that called it from outside.

The FibCont type represents a stack of continuations/activation
records. All but BOS contain a single recursive reference to FibCont
type, which gives it the structure of a list. Each record holds the
variables that are live across the corresponding call site: n across
the first (used to compute t3) and t2 (the result of the first call)
across the second.

The final step (Figure 1d) merges the fibr and fibc functions into
a single function (ff) that is exclusively tail-recursive. Another type,
FibT, is introduced that encodes calls to either the initial segment
(fibr) or later segments (fibc).

3. Our Algorithm
Our algorithm starts with any set of functions, including recursive
functions, tail recursive functions, and one or more subsets of mutu-
ally recursive functions, that do not contain lambda expressions. It
produces a set of functions that includes a function with a matching
name and semantics for each input function, but all of the produced
functions’ recursions are tail-self-recursions.

As a first step, it merges each group of mutually recursive
functions into one self-recursive function per group. The result is a
set of functions that are, at most, simply recursive.

Then, for each recursive function, our algorithm makes it tail-
recursive by transforming it in several steps. First, we transform the
function into a linear structure. Next, we extract case constructs that
include recursive calls into separate functions. Then, we add CPS-
style continuations. After that, we split apart the linear structure
at recursive call sites, adding their continuations to the CPS-style
machinery. Finally, we once more use our machinery for combin-
ing functions to merge the recursion, continuation, and any case
fragments we created in the second step. The recursive function we
finally generate is only tail recursive.

Below, we describe this process in detail, illustrating each trans-
formation with an abstract example.

3.1 Combining a Group of Mutually Recursive Functions
In this section, we describe how our algorithm merges groups of
mutually recursive functions into a single function. Our algorithm
performs this operation twice: once at the beginning to ensure the
remainder of our algorithm only need consider simply recursive
functions and finally after we have broken a recursive function into
continuations to deliver a result that is only tail-recursive.

The first step in combining a group of functions is to normalize
them so they each return an object of the same type. To do this, our
algorithm creates a sum type that combines all their return types.
Next, each function is made to return an object of this type. Corre-
sponding “unwrappers” are generated for each component function
which call the transformed function and unwrap the returned sum
type.

To illustrate, if “f” and “g” are two functions that return types
“t2” and “t4,”

Transforming Recursion for Hardware 2 2012/10/7

f :: t1 → t2
f x = . . . g a . . . k

g :: t3 → t4
g y = . . . f b . . . q

our algorithm generates

data RT_f_g = RT_f t2 | RT_g t4

f ′ :: t1 → RT_f_g
f ′ x = . . . g a . . . (RT_f k)

g ′ :: t3 → RT_f_g
g ′ y = . . . f b . . . (RT_g q)

f :: t1 → t2
f x = case (f ′ x) of RT_f r → r

g :: t3 → t4
g y = case (g ′ y) of RT_g r → r

Next, these unwrapper functions (the new “f” and “g”) are
inlined at their call sites (e.g., f′ and g′) so only the versions of
the functions that return the same type are called.

data RT_f_g = RT_f t2 | RT_g t4

f ′ :: t1 → RT_f_g
f ′ x = . . . (case (g ′ a) of RT_g r → r) . . . (RT_f k)

g ′ :: t3 → RT_f_g
g ′ y = . . . (case (f ′ b) of RT_f r → r) . . . (RT_g q)

f :: t1 → t2
f x = case (f ′ x) of RT_f r → r

g :: t3 → t4
g y = case (g ′ y) of RT_g r → r

After our algorithm normalizes the return types of f′ and g′, they
are merged as described below. That step produces wrappers for the
f′ and g′ functions, but since these wrappers are only used by the
unwrappers we produced here (“f” and “g”), the wrappers for the f′
and g′ functions are inlined and later discarded.

Once our algorithm has ensured that each function in the group
of functions has the same return type, it can combine them into
a single simply recursive function as described below. This new
function takes a single sum-typed argument and pattern matches it
to recover the function and arguments that were being called. The
sum type has one option for each original function; each option’s
components are the arguments for the corresponding function. The
case statement has one branch per original function. It binds the
sumtype’s components to its function’s argument names and sends
control to the code for the original function. Wrappers are gener-
ated for each of the component functions, which are inlined into
the combined function at all call sites. This way, any calls between
the component functions become calls to the combined function;
all mutual recursion becomes simple self-recursion.

To illustrate, consider a pair of mutually recursive functions “f”
and “g.” Their arguments are x1 · · ·xn and y1 · · ·ym, whose types are
t1 · · · tn and u1 · · ·um respectively. Both f and g must have the same
return type t. Assume “f” and “g” call each other recursively with
arguments v1 · · ·vm and w1 · · ·wm.

f :: t1 → t2 → . . . → tn → t
g :: u1 →u2 →. . . → um →t
f x1 . . . xn = . . . (g v1 . . . vm) . . .

g y1 . . . ym = . . . (f w1 . . . wn) . . .

Our algorithm introduces a new type “FG” that encapsulates the
arguments passed to “f” and “g”:

data FG = F t1 . . . tn
| G u1 . . . um

Any calls to the two functions are replaced with calls to a
merged function “fg” that encapsulates the arguments to the origi-
nal function with an object of the “FG” type

f x1 . . . xn = fg (F x1 . . . xn)
g y1 . . . xm = fg (G y1 . . . ym)

Finally, it creates a combined function “fg” that takes a single
argument of the “FG” type and moves the bodies of the f and g
functions into options for a case expression that pattern-matches
on the argument.

fg arg = case arg of
F x1 . . . xn →. . . (fg (G v1 . . . vm)) . . .

| G y1 . . . ym →. . . (fg (F w1 . . . wn)) . . .

3.2 Linearizing
Once any groups of mutually recursive functions have been com-
bined, only self-recursive functions remain, so our algorithm can
work on single functions. Our algorithm transforms each non-tail
recursive function so that recursive calls only happen in a let with
a single binding to the result of a recursive call—what we call a
recursive-let. We do this because it makes the body of such a let ex-
actly the code to be executed after the called function returned—it
will become one of the continuations in the third step of our algo-
rithm.

Our algorithm lifts out the scrutinee of any case and the argu-
ment of any call that recurses, binding the subexpression to a new
temporary. It uses a similar technique to break up nested lets. The
result is a simple sequence of lets.

For example, starting from

let a = f (g (h i))) in c

the inner call of h is lifted out, giving

let a = f (let t1 = (h i) in g t1) in c

then the argument of f is also lifted to give

let a =
let t2 =

let t1 = h i in
g t1 in

f t2 in
c

Finally, nested lets are flattened, giving

let t1 = hi in
let t2 = g t1 in
let a = f t2 in
c

3.3 Restructuring Case Constructs
Even with all recursions occurring in recursive-lets, the continua-
tion (in clause) of a recursive-let is not yet always the entirety of
the continuation needed after the recursion. Consider a recursion in
a branch of a case in a let binding, such as

Transforming Recursion for Hardware 3 2012/10/7

f x =
. . .
let y = case x of

a → s
| b → f z . . . r
in q

Here, since the body of the let, “q” is executed after every
branch of the case, it would be most natural to simply copy it
into the continuation that follows “f,” but there is a danger that this
would lead to a code size explosion.

Instead, we create a case-continuation function for each such
“q,” which takes the free variables of “q” as arguments. We push
the let binding into the return expression of the case, and call the
case-continuation function in its body. The above example becomes

f x =
. . .
case x of

a → let y = s
in cfA x y

| b → f z . . .
let y = r
in cfA x y

cfA x y = q

3.4 Adding Continuations
With the function now normalized, the second step of our algorithm
adds a CPS-like continuation parameter to the function, which ob-
viates the need for the function to ever return from a recursive call.
Instead, it passes results to explicit continuations. CPS traditionally
uses lambdas, which do not have a clear implementation in hard-
ware. Instead, because we will know all of the possible continua-
tions, we use a single “continue” function and pass it the continua-
tion parameter, an algebraic data type that describes which contin-
uation should be taken. Initially, the only continuation type option
is the bottom-of-stack label, whose corresponding branch simply
returns the value passed to the continuation function:

data Cont = BOS
fc continuation result = case continuation of BOS→ result

Calling the original function, then, represents an additional re-
cursion, as opposed to an additional continuation, so the original
function is renamed to be the “recurse” function. This is also in
part because the function now takes a different argument list, so
calls to it would be incompatible. The original function, maintain-
ing its name and signature, becomes a wrapper around the recurse
function:

f x = fr x BOS

There are two cases for returned expressions, both of which we
want to pass through the continuation function (in the new recurse
function as well as any case-continuation functions). First, when
a simple value is returned (e.g., a bound object or the result of
something like an addition), our algorithm replaces it with a call
to the continuation function, passing it the continuation and the
result as the arguments. The other case is when the result is a
tail recursion. By definition, a tail recursion’s continuation is its
calling function’s continuation, so we simply transform the tail call
with a tail call to the “recurse” function, with the same arguments,
but with the continuation parameter appended as well. The fibr
function in Figure 1c illustrates both these cases. For the “1” and
“2” branches, a simple constant was being returned; now, it calls
fibc with the passed-in continuation and the constant as arguments.

For the tail-recursive case, the recursive call passes the argument
(t1) but appends to it a continuation representing the work to be
done afterward.

3.5 Extracting Continuations
When splitting the linearized body of the function, the algorithm
only has to handle recursive-lets. This is convenient because with
recursions in cases in lets removed, a recursive-let’s body precisely
represents that recursion’s continuation.

Each recursive-let is transformed into a tail call of the recurse
function; the body of the recursive-let is placed in the continue
function, where it becomes a new branch that corresponds to a new
option added to the continuation type. The tail call that replaces the
recursive-let has all the arguments of the original call followed by
an argument that encodes the continuation—the work to be done
after the tail call “returns.”

For the body of the let being replaced to execute in the same en-
vironment, it needs to capture the values of its free variables. Our
algorithm identifies which free variables to capture for the contin-
uation and adds them as components to its sumtype option. Sim-
ilarly, its branch in the continuation function binds those compo-
nents to the names of the expected free variables, and adds the pre-
captured variables as arguments to the continuation label construc-
tor for the new tail recursive call.

In order for the continue function to maintain only tail calls to
the recurse function, this transformation needs to happen from the
bottom up. It is run not only on the recurse function, but also on
any case-continuation functions.

To illustrate, given

let v1 = . . . in
. . .
let vn = . . . in
let z = f a1 . . . an in . . . v1 . . . vn . . .

where v1, . . . , vn (of types t1, . . . , tn) are variables that occur free in
the body of the let, we generate

type Cont =
| C t1 . . . tn
| BOS

The call to the recursive call in the recurse function becomes a tail-
recursive call with the continuation saving the free variables tacked
on to the end:

let v1 = . . . in
. . .
let vn = . . . in
fr a1 . . . an (C v1 . . . vn)

Finally, our algorithm adds a matching case to the “continue”
function “fc” that executes the code for the continuation:

fc c r = case c of
. . .

| C v1 . . . vn →
let z = r in . . . v1 . . . vn . . .

| BOS→ r

3.6 Combining Generated Mutually Recursive Functions
At this point, any recursive calls or calls between the recurse func-
tions, the continue function, and any case-continuation functions
are tail calls. However, in many cases (i.e., when the original func-
tion has multiple continuations, such as in the Fibonacci example),
the recurse function and continuation functions are mutually recur-
sive. If this is the case, we merge them using our algorithm for

Transforming Recursion for Hardware 4 2012/10/7

combining functions, which we described in Section 3.1. It main-
tains the tail-ness of calls in its component functions, so when it is
run on, for example, the recurse function and continuation function,
its resulting combined function is tail-recursive only; see Figure 1d.

4. Correctness
Here, we argue for the correctness of our algorithm. Broadly, our
algorithm is a series of semantics-preserving transformations that
impose various invariants along the way.

4.1 Intermediate Functions Only Tail Recurse
The intermediate recurse, continue, and any case-continuation
functions, although possibly mutually recursive, are tail-recursive-
only (TR-only) if the calls between them are considered self re-
cursive, as they are once they are combined. They are TR-only
because any non-TR-only (non-TR) forms of expressions in the
source functions are transformed to TR-only expressions, as long
as their subexpressions are TR-only. Because our transformations
are applied as postorder traversals, inductively, the produced func-
tions are TR-only.

The base cases for this induction are variable and literal expres-
sions. These never recursive, so they are TR-only.

A function call is TR-only iff none of its arguments are recur-
sive. Because we linearize the function, a call’s arguments are al-
ways variables and thus nonrecursive.

Note that the TR-only condition is equally true of a recursive
call: iff its argument expressions are recursive, the recursive call
is no longer a tail-recursive expression. Otherwise, recursive calls
are considered tail-recursive, so they are TR-only. Note that this
does not mean that the recursion it produces may not be a non-
tail recursion; cases and lets can be non-TR if certain of their
subexpressions are recursive, even tail-recursive.

A case is TR-only iff its scrutinee is nonrecursive and all of its
branches are TR-only. Because we extract subexpressions, a case’s
scrutinee must be a variable and is thus nonrecursive. Because we
assume each subexpression is TR-only, the branch expressions are
all TR-only, which, combined with a nonrecursive scruintee, makes
the case TR-only.

let b = e in body is TR-only if its binding, “e,” is nonrecur-
sive and its body is TR-only. Because we assume all subexpressions
are TR-only, we assume its body is TR-only. However, if “e” is a
recursive expression, TR-only or not, the let becomes non-TR, as
“body” needs to run after “e.” Therefore, a let output by the algo-
rithm cannot have a binding that includes a recursive call.

Our algorithm does not leave any recursive expressions in let
bindings. If it was a nested let, it was flattened in the linearization
process. If it was a case, it was extracted (and its recursive-let’s
body turned into a case-continuation function). Calls that are non-
recursive are naturally valid. Calls that are recursive, on the other
hand, are explicitly taken out of their lets in the continuation ex-
tracting phase, and their recursive-let’s bodies moved into the con-
tinue function.

The continue function and any case continuation functions are
also TR-only. This is because they are constructed by tail-branching
to subexpressions taken from the original function. The transforma-
tions are postorder, so when the subexpressions is taken, they are
TR-only.

4.2 Combined Functions Only Tail Recurse
If each of a set of component functions are TR-only, pretending
that calls between them were self recursions, then their combined
function is TR-only, as these mutually recursive tail calls now are
self recursive in the combined function. This happens because the
wrappers are inlined; if they were not, they would be mutually

recursive with the combined function, and neither would be TR-
only.

The continuation argument passed to the function will always
be captured because either the new continuation returns by calling
the continuation function with it, or, because the algorithm does
this transform in a postorder traversal, the continuation has a tail
call with a continuation that itself captures it.

4.3 Semantics are Preserved at Each Step
The function combination, linearization, continuation adding, and
continuation extracting operations each maintain semantic equiva-
lence. Therefore this whole algorithm, a composition of those steps,
maintains semantic equivalence.

Linearization is a combination of subexpression extraction and
let flattening. Subexpression extraction is a common, semantics-
preserving transformation. Let flattening does not modify the bind-
ings or the outermost let body. All of the bindings become available
to that outermost let body. All variable names are assumed unique,
so the addition of extra, unused variables to its environment does
not affect it.

Continuation addition preserves semantics because to begin
with, the continue function is the identity function (only BOS can
be passed to it at this point). The original function is moved to a new
function, the recurse function, so that the continuation parameter
may be added. The original function is rewritten to simply call the
recurse function with an additional BOS parameter. Thus, as long
as the recurse function, when passed a BOS, has the same semantics
as the original function, the function is semantics-preserving. This
is true because all returns are passed through the continue func-
tion, but with BOS, which makes the continue function the identity
function. Thus, the recurse function has exactly the same semantics
as the original function, when passed the BOS parameter.

The continuation extracting transformation is semantics pre-
serving because it is effectively a partial CPS transformation.
Transforming functions to CPS has been shown to be semantics-
preserving [1]. Separately, the case-continuation extraction process
is simply lambda abstraction; which is semantically equivalent in
the lambda calculus.

The function combination algorithm is semantics preserving be-
cause of the simple semantic identities a = case B of B → a and
case B of B → a = case B of B → a | X → y. Effectively,
it transforms component functions from the left hand side of the
former to the right, then combines them according to the latter.

5. Discussion
5.1 Generated types
The continuation type (e.g., FacCT) is separate from the combined
type (e.g., FacT) because when you call the continuation function,
you pass the calling recursion’s result as well its continuation. The
recursion’s returned result is of the return type of the function, so
the continuation function’s signature is rt → cont → rt, while the
function’s may be a→ cont → rt where a 6= rt, or a could repre-
sent multiple arguments. Therefore, the function header (e.g., facR)
cannot be treated like a continuation. Furthermore, because the re-
sult argument to the continuation function is not known at the time
of construction of a continuation, said argument needs to be passed
to the continuation function separately from the continuation-typed
parameter. This forces the type of the continuation function, which
is necessarily separate from the function header. If these are mu-
tually recursive, there must be a new type as per the combine-
functions algorithm.

On the other hand, case continuations (continuations that are
the result of a recursion in a case in a let) do not count as con-
tinuations in the continuation function, and are treated as separate

Transforming Recursion for Hardware 5 2012/10/7

(potentially mutually recursive) functions. Unlike regular (recur-
sion in a let binding-resulting) continuations, the “result” value of
these is known as soon as the continuation would be constructed.
In fact, we do not construct a continuation value for case continua-
tions because they are not needed—they can be called immediately.
Furthermore, their “result” value may be of a different type than the
return type, so they could not have the type signature of the con-
tinuation function. Ultimately, we use combine-functions on case
continuations as a matter of choice; we could instead simply ap-
pend the continuations to each branch of the case. We choose not
to because this would result in duplication of code.

5.2 Stack
There never are multiple continuations available at the same
time, so each continuation captures exactly one other continua-
tion; the BOS label captures nothing. Therefore, the continuations
form a linked list. However, because they are only deconstructed
(“popped” from) once, they behave as a stack. Thus, this algorithm
effectively constructs an explicitly passed stack.

5.3 Stackless Tail-Recursive Functions
The given examples, fib and fac, have stackless tail-recursive equiv-
alents, which the algorithm does not generate, because not all re-
cursive algorithms have a stackless equivalent. Fac, for example,
can be given as

fac ′ n a = case n of 1 → a | _ → fac (n − 1) (a ∗ n)
fac n = fac ′ n 1

which is preferable to what we generate because it is both TR-only
and does not need a stack. However, not all recursive functions have
a stackless tail-recursive implementation.

Our algorithm is meant to transform any function to an equiva-
lent TR-only one, and some functions require a stack. For example,
functions that postorder traverse tree (or equivalent) data structures
need to know the parent node of the node they are visiting, some-
thing traditionally done by simply returning to the calling instance
of the function, whose visited node is the parent of the node re-
cursed on. For example, consider a function that finds the sum of
the values of nodes in an n-tree. The activation record of the calling
instance of any recursion, maintained on the stack, includes some
information of its visited node; thus the stack effectively maintains
(at least) a list of parent nodes. Any semantics-preserving transfor-
mation of the sum function must include this list of parent nodes
in order to know which node to visit next; this list is effectively a
stack, one way or another.

5.4 Performance
To test our algorithm, we implemented it in Haskell, operating over
GHC Core [7?] and producing OCaml and Haskell. It worked
for our test cases. We compared the performance of the trans-
formed and untransformed programs, shown in Figure 2. The un-
transformed programs ran significantly faster than the transformed
programs, but the difference varied. O’Caml code performed con-
sistently about 3.7× slower after our transform, and Haskell ran
slower still, over a range of 3× to 20×, depending on the input.
We did not record the exact memory usage while these tests were
running, but we found them to be needlessly high. It seems likely
that this excessive use of memory, which certainly overflowed the
cache, had a significant effect on the tests. Garbage collection may
also have negatively impacted the performance; we did not attempt
to measure it.

Clearly, the runtimes and compilers for O’Caml and Haskell
handle non-tail recursion more efficiently than they do data struc-
tures that happen to be stacks. So although we do not recommend
this algorithm be used to modify software, our intention was always

1 us

31 us

1 ms

31 ms

1 s

 0 10 20 30 40

Fib in O'Caml (ocaml-opt)

Untransformed
Transformed

1 us

31 us

1 ms

31 ms

1 s

 0 10 20 30 40

Fib in Haskell (GHC)

Untransformed
Transformed

Figure 2. Execution time for various invocations of the fib func-
tion, before and after our transformation, using the ocaml-opt and
GHC compilers.

that the algorithm be applied to restructure code before transform-
ing it into hardware.

The performance results show that explicit stack manipulation
in O’Caml and Haskell’s runtime systems is less efficient than im-
plicit stack manipulation via function calls. Although this indicates
that function calls and returns are efficient in OCaml and Haskell, at
least compared to data manipulation, it also suggests that their run-
times could be more efficient when handling explicit stacks. Stacks
are not uncommon data structures even outside the call stack and
can likely be optimized by the runtime at a lower level than the IR.

It is possible to analyze a program and determine if a data
type is used as a stack. Even if the data type is like the list type,
which may be used in a non-stack fashion in some locations while
treated just like a stack in others, type system analyses could be
used to identify objects of that type that are treated as a stack and
make them an identical but separate type. One possible check to
determine if a type is a stack would be to establish that it is singly
recursive, with one or more non-recursive options; that any time
an object of that type is unwrapped (i.e. pattern matched, binding
its components) it is not later used; and that any object of that
type is only once passed to a function, including and especially
a constructor, and then not used again. Although these criteria
are conservative (a programmer could sneak a stack past them), it
would at least identify those stacks produced by our algorithm. It,
and others, could speed up the programs produced by the algorithm
presented here, as well as many other programs that, for unrelated
reasons, explicitly manipulate stacks or stack-like data structures.

Transforming Recursion for Hardware 6 2012/10/7

6. Conclusion
We presented an algorithm that transforms general recursion in a
functional program into tail recursion and argued for its correct-
ness. The purpose of this algorithm is to transform recursive func-
tional code into a form suitable for generating hardware, where tail
recursion is easy to implement as iteration but recursion is not ob-
vious. Our algorithm works largely by using ideas from CPS and
combining mutually recursive functions when necessary. We saw
that in transforming functions to CPS-style TR-only equivalents,
we effectively produced an explicit stack.

When tested on the O’Caml and GHC’s runtime, we saw that
making the stack explicit produced a noticeable performance degra-
dation. While this was somewhat expected, the magnitude of the
slow-down suggests that many programs that currently manipulate
explicit stacks (i.e., written by programs) could be greatly improved
by adding a “stack identification” optimization to existing func-
tional compilers, perhaps in the spirit of Deforestation [6].

In the future, we will use this work as part of a larger Haskell-
to-hardware compiler, as this algorithm’s removal of non-tail re-
cursion is essential for automatically designing hardware for po-
tentially recursive functions.

Acknowledgments
This work was supported by the NSF under grant CCF-SHF 1162124.

References
[1] A. Appel. Compiling with Continuations. Cambridge University Press,

1992.
[2] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. Cλash:

Structural descriptions of synchronous hardware using Haskell. In Pro-
ceedings of the Euromicro Conference on Digital System Design (DSD),
pages 714–721, Lille, France, Sept. 2010. doi: 10.1109/DSD.2010.21.

[3] O. Danvy, J. Johannsen, and I. Zerny. A walk in the semantic park.
In Proceedings of the Workshop on Partial Evaluation and Program
Manipulation (PEPM), pages 1–12, Austin, Texas, Jan. 2011.

[4] J. B. Dennis. General parallel computation can be per-
formed with a cycle-free heap. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 96–103, Paris, France, Oct. 1998. doi:
http://dx.doi.org/10.1109/PACT.1998.727177.

[5] D. R. Ghica, A. Smith, and S. Singh. Geometry of synthesis IV:
Compiling affine recursion into static hardware. In Proceedings of the
International Conference on Functional Programming (ICFP), pages
221–233, Tokyo, Japan, Sept. 2011. doi: 10.1145/2034773.2034805.

[6] A. Gill, J. Launchbury, and S. L. P. Jones. A short cut to deforesta-
tion. In Proceedings of Functional Programming Languages and Com-
puter Architecture (FPCA), pages 223–232, Copenhagen, Denmark,
June 1993.

[7] S. P. Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming, 12:393–434, Sept. 2002.

[8] A. Mycroft and R. W. Sharp. Hardware synthesis using SAFL and
application to processor design. In Proceedings of Correct Hardware
Design and Verification Methods (CHARME), number 2144 in Lecture
Notes in Computer Science, pages 13–39, Livingston, Scotland, Sept.
2001.

[9] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference, pages 717–
740, 1972. doi: 10.1145/800194.805852. Reprinted in Higher-Order
and Symbolic Computation 11(4):363–397 Dec. 1998.

Transforming Recursion for Hardware 7 2012/10/7

